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In this paper we present a kinetic model for the thermal unfolding of a native protein. Due to a sufficiently
large temperature increase or decrease, the rate with which a cluster of native residues within a protein emits
residues becomes larger than the rate of absorption of residues from the unfolded part of the protein in the
whole range of cluster sizes up to the size of the whole protein. This leads to the unfolding of the protein in a
barrierless way, i.e., as spinodal decomposition. Using the formalism of the first passage time analysis �previ-
ously applied also to the problem of protein folding via nucleation by the authors, J. Phys. Chem. B 111, 886
�2007�; J. Chem. Phys. 126, 175103 �2007��, one can determine the temperature dependence of the rates of
emission and absorption of residues by the cluster. Knowing these rates as functions of temperature and cluster
size, one can find the threshold temperatures of cold and hot barrierless denaturation as well as the unfolding
times at temperatures lower and higher, respectively, than those threshold values. For a numerical illustration,
the method is applied to the thermal unfolding of a model protein consisting of 2500 residues.
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I. INTRODUCTION

Most biologically active proteins have a well-defined
three-dimensional native structure �1–3�. The stability of this
structure constitutes the core of the “protein denaturation”
�i.e., unfolding� problem �4,5� whereof many thermodynamic
and kinetic aspects remain obscure �4–9�. The unfolding of a
protein results in the loss of its biological functionality which
may lead to catastrophic consequences for a living organism.

Protein denaturation can be defined as a process �or se-
quence of processes� whereby the spatial arrangement of the
polypeptide chain�s� within the molecule changes from that
of the native protein to a more disordered one �4�. This
change may alter the secondary, tertiary, or quaternary struc-
ture of the protein. Note that what constitutes denaturation is
largely dependent upon its cause. Changes in the structure of
proteins can be caused by a variety of factors, such as
changes in pH of the protein medium �10–13�, in its dielec-
tric constant �12,13� or/and in its ionic strength �14,15�, pro-
tein contact with liquid-vapor or liquid-liquid interfaces
�16,17�, high pressure �18�, heating or cooling �4–9� �thermal
denaturation�, etc.

In this paper we propose a kinetic model of the thermal
mode of protein denaturation. Both experiments and simula-
tions have provided evidence that a native protein, stable at
temperature T0, can unfold upon both cooling and heating
�4–9�. When proteins are exposed to increasing or decreasing
temperatures, the loss of their biological functionality occurs
over a fairly narrow temperature range. Depending upon the
protein and the severity of the heating or cooling, the
changes may or may not be reversible. Existing theories of
unfolding consider water and the amino acid hydrophobicity
as crucial factors not only for the correct folding of proteins

but also for the maintenance of this structure and for its
unfolding �4,19–28�.

Protein unfolding �denaturation� is easier understood at
high temperatures where it can be at least partly accounted
for by a decreased stability of hydrogen bonding between
water molecules and between water and protein residues.
With increasing temperature, some bonds in a protein mol-
ecule are weakened. The first affected are the long range
interactions responsible for the stability of the tertiary struc-
ture. As these are weakened and broken, the protein becomes
more flexible and its �previously� internal groups become
more exposed to the solvent. If heating ceases at this stage,
the protein is able to refold to the native structure. Upon
further heating, some of the hydrogen bonds that stabilize the
helical structure begin to break so that the water molecules
can interact and form new hydrogen bonds with the amide
nitrogen and carbonyl oxygens of peptide bonds.

Thus, as the helical structure is broken, new hydrogen
bonding groups and hydrophobic groups are exposed to the
solvent and this leads to an increase in the amount of water
bound by the protein molecules. This increases the hydrody-
namic radius of the molecule causing the viscosity of the
solution to increase. The net result will be an attempt by the
protein to minimize its free energy by burying as many hy-
drophobic groups as possible while exposing as many polar
groups as possible to the solvent. Although this is analogous
to what occurred when the protein initially folded, it now
occurs at a much higher temperature. This greatly weakens
the short range interactions that initially govern protein fold-
ing and the resulting structures are often very different from
those of the native protein.

The widespread existence of protein unfolding at low
temperatures is surprising, particularly because it is unex-
pectedly accompanied by a decrease in entropy �28�. It was
shown �5� that the cold denaturation is a general phenom-
enon caused by the very specific and strongly temperature-
dependent interactions of the protein nonpolar groups with
water. In contrast to expectations, the hydration of these
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groups is favorable thermodynamically, i.e., the Gibbs en-
ergy of hydration is negative and increases in magnitude as
the temperature decreases �5�. As a result, the polypeptide
chain, tightly packed in a compact native structure, unfolds
at sufficiently low temperatures by exposing internal nonpo-
lar groups to water.

Computer simulations, based either on Monte Carlo �MC�
or on molecular dynamics �MD� methods, have been an es-
sential tool for studying both protein folding and protein de-
naturation. All theoretical treatments of protein unfolding in-
tended to provide information from computer simulations of
the process. So far, virtually no analytical description of pro-
tein denaturation has been proposed that would be similar to
those �23,29–33� for the nucleation mechanism of protein
folding �which is believed to be one of the possible pathways
for the transition of a protein from the compact “amorphous”
configuration �into which an initially unfolded protein
quickly transforms� to the native state�.

Recently �31–33�, we have presented a different, micro-
scopic model for the nucleation mechanism of protein fold-
ing whereby, once a critical number of native tertiary con-
tacts is established, the native structure is formed without
passing through any detectable intermediates �3,34–36�. The
model makes use of a first-passage-time analysis and is
based on pairwise “molecular” interactions �i.e., repulsion
and attraction�, configurational �dihedral angle� potentials in
which protein residues are involved, and confining potential
which arises because of the finite size of the protein. The
protein itself is treated as a random heteropolymer chain con-
sisting of three types of beads—neutral, hydrophobic, and
hydrophilic �3,29,32� �with all the bonds and bond angles
equal and constant: the model explicitly takes into account
the coupling between amino acids, i.e., the polymer connec-
tivity�.

In this paper we propose a similar model for the process
of protein denaturation occurring, however, in a barrierless
way, i.e., as spinodal decomposition. �Previously �37�, it was
suggested that the collapse of a single polymer chain to a
globular shape involves the formation of a “necklace” con-
figuration, as a first stage, via a spinodal process. This paper
concerns an opposite process, namely, protein unfolding,
which occurs entirely via spinodal decomposition.� We con-
sider a native protein stable at temperature T0 and examine
the temperature dependence of the rates with which it can
emit and absorb residues. At T0 the absorption rate is greater
than the emission rate for large enough clusters �of native
residues�. The unfolding temperature is determined as the
temperature at which the emission rate becomes greater than
the absorption rate in the whole range of cluster sizes �in-
cluding the one corresponding to the entire protein�. The
temperature dependence of the emission and absorption rates
is examined by using the formalism of a first-passage-time
analysis �31–33� for a series of temperatures.

II. PROTEIN DENATURATION VIA SPINODAL
DECOMPOSITION

In our previous work �31–33� on protein folding we con-
sidered a protein as a random heteropolymer �38–41� con-

sisting of N connected beads which can be thought of as
representing the �-carbons of various amino acids �Fig. 1�.
For simplicity, let us consider the case where the heteropoly-
mer consists only �31� of hydrophobic �b� and hydrophilic �l�
beads sequentially �and randomly� connected to one another
by covalent bonds of equal and constant length � with equal
and constant angles �0=105° between two neighboring
bonds. Assuming that the composition of a cluster of native
residues within a protein �which is in a compact, but non-
native state� remains constant and equal to the overall com-
position of the protein at all times, one can �31� treat protein
folding in terms of unary nucleation and characterize the
cluster by �, the total number of residues therein.

As discussed above, the stability of a folded �native� pro-
tein can be disrupted by various factors. Continuing the de-
velopment of a model for the protein folding-unfolding tran-
sitions by analogy with the theory of first order phase
transitions, one can presume that, depending on the strength
of the destabilizing factor�s�, the denaturation �unfolding� of
the protein can occur either fluctuationally as nucleation �at
weak destabilization� or, alternatively, in a barrierless way as
spinodal decomposition �at strong destabilization�. In the
former case �i.e., unfolding via nucleation�, the initial un-
folding of the protein is thermodynamically unfavorable, but
can still occur owing to fluctuations. After the protein un-
folds to some critical extent, further denaturation becomes
thermodynamically favorable occurring with the decrease in
the free energy of the system �protein+medium�. In the case
of “spinodal decomposition,” the protein unfolding is ther-
modynamically favorable starting from the native state down
to full denaturation.

The fundamental kinetic characteristics of the protein un-
folding are represented by the rates of emission and absorp-
tion of protein residues by a cluster �of native residues�. The
total rates of emission and absorption of residues by the clus-
ter are given by

W− = Wb
− + Wl

−, W+ = Wb
+ + Wl

+,

where Wi
−�Wi

−��b ,�l� and Wi
+�Wi

+��b ,�l� �i=b , l� are the
rates of emission and absorption, respectively, of beads of
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FIG. 1. A piece of a heteropolymer chain around a spherical
cluster consisting of �=�b+�l beads. Bead 1 is in the plane of the
figure, whereas the other beads may all lie in different planes. All
bond angles are equal to �0=105° and their lengths are equal to �.
The radius of the cluster is R and the distance from the selected
bead 1 to the cluster center is r.
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type i by a cluster containing �b hydrophobic and �l hydro-
philic residues. Owing to the chosen approximation �the
composition of a cluster of native residues within a protein
�which is in a compact but non-native state� remains constant
and equal to the overall composition of the protein at all
times�, the numbers �b and �l are related to �=�b+�l as �b
=x0� and �l= �1−x0��, where x0=Nb / �Nb+Nl� is the mole
fraction of hydrophobic residues in the entire protein �Ni�i
=b , l� is the total number of residues of type i in the protein�.
Thus one can �31� characterize the cluster by �, the total
number of residues therein, and W+ and W− can be attributed
to a cluster of size � �with 0���N�,

Ww��� = Wb
w
„x0�,�1 − x0��… + Wl

w
„x0�,�1 − x0��…

� Wb
w��b,�l� + Wl

w��b,�l� �w = + ,− � . �1�

Being interested in thermal denaturation, let us consider a
folded protein at T0, and assume that it can unfold via spin-
odal decomposition at either T�Tu

+�T0, which corresponds
to hot denaturation, or T�Tu

−�T0, which corresponds to
cold denaturation. The corresponding threshold temperatures
�Tu

+ and Tu
−, respectively�, at which denaturation can occur,

can be determined by solving the equation W−�N ,T�
=W+�N ,T� with respect to T. If the equation has two solu-
tions, Tu

+ and Tu
−, the protein can unfold upon both heating

and cooling. If the equation has just one solution, either Tu
+ or

Tu
−, protein denaturation can occur just upon either heating or

cooling. In general, �Tu
+−T0� does not have to be equal to

�Tu
−−T0� because denaturation upon heating and cooling is

due to several factors, some of which are of different nature
in the two cases and even those which are of the same nature
may be nonlinear functions of temperature.

The full unfolding time tu can be evaluated by solving a
couple of simultaneous differential equations governing the
temporal evolution of the variables �b and �l for �b�Nb and
�l�Nl,

d�i/dt = Wi
+ − Wi

− �i = b,l� , �2�

subject to the initial conditions �i=Ni �i=b , l� at t=0 and
�i=0 �i=b , l� at t= tg. However, by virtue of the chosen ap-
proximation �b / ��b+�l�=const=x0, these simultaneous equa-
tions reduce to a single independent equation which �owing
to Eq. �1�� can be written in the form

d�

dt
= − �W−��� − W+���� �3�

and which has to be solved subject to the initial conditions
�=N at t=0 and �=0 at t= tu. One can thus obtain

tu � �
0

N d�

W−��� − W+���
. �4�

The right-hand side �RHS� of this equation is positive be-
cause W+����W−��� in the whole range 0���N at T=Tu

	

�see Fig. 2�b��. Note that at T=Tu
	 the integrand diverges at

the upper limit of integration hence care must be taken in
applying Eq. �4� at these temperatures �see Sec. II B�.

The emission and absorption rates of a cluster �of native
residues� of size � �with 0���N� are qualitatively pre-

sented in Fig. 2�a� �for a protein at temperature T=T0 at
which it folds via nucleation�, Fig. 2�b� �for a protein at
threshold temperatures, T=Tu

+ or T=Tu
−�, and Fig. 2�c� �for a

protein at temperature T�Tu
+ or T�Tu

− at which it unfolds�.
As is clear �see Fig. 2�b��, W+����W−��� for ��N at tem-
perature Tu

	 �the equality W+=W− holds only for the largest
cluster possible, i.e., at �=N�. Therefore if a protein is ini-
tially folded at this temperature, it can start unfolding via
regular loss of residues from its native structure. The unfold-
ing will occur even faster at T�Tu

+ �or T�Tu
−�, as shown in

Fig. 2�c�, because in this case W+����W−��� for all ��N
�including �=N� and the difference W−���−W+��� is greater
than for T=Tu

	 �see Sec. III for more details�.

A. Determination of W+=W+(�) and W−=W−(�)
via the first-passage-time analysis

At any given temperature both functions W+=W+��� and
W−=W−��� can be determined by using a first-passage-time
analysis �the method was first �42–45� applied to calculating
W−=W−��� in unary nucleation and later extended �31–33� to
both W−=W−��� and W+=W+��� in protein folding via nucle-
ation�. Let us consider a spherical cluster of native residues
�with the structure stabilized by native tertiary contacts�
within a protein and denote the distance from its center by r.
In our model �31–33� the total potential 
i�r� of a selected
bead of type i around the cluster contains three terms: the
effective pairwise potential �i�r�, confining potential �cp,
and average dihedral potential �̄i

��r�:


i�r� = �i�r� + �̄i
��r� + �cp �5�

�for more details see Refs. �31–33��. The first term on the
RHS of this equation represents the effective bead-cluster
interactions �due to pairwise interactions of the selected resi-
due with those in the cluster�. The second term on the RHS
of Eq. �5� results from the averaging of the total dihedral
angle potential, in which the selected bead is involved, over
all the possible configurations of its six nearest neighbors.

R, cluster size

W
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W
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FIG. 2. The qualitative behavior of W+��� and W−���, the emis-
sion and absorption rates of a cluster �of native residues�, as func-
tions of the cluster size R for a protein in the native state �a�, for a
protein at the threshold temperature of hot or cold denaturation �b�,
and for a protein at a temperature above the threshold one of hot
denaturation or below the threshold one of cold denaturation �c�.

THERMAL DENATURATION OF A NATIVE PROTEIN VIA … PHYSICAL REVIEW E 78, 011909 �2008�

011909-3



The dihedral angle potential arises due to the rotation of
three successive peptide bonds connecting four successive
beads and depends not only on the dihedral angle � �which is
an angle between two planes each of which is determined by
a sequence of three beads� but also on the nature and se-
quence of the four beads involved �for more details, see be-
low and Refs. �31–33��. The third term represents the con-
fining potential which arises because all the residues of the
protein are linked. Due to these bonds between the residues,
none of the latter can be located outside some confining
boundary.

It was shown �31–33� that the combination of potentials
on the RHS of Eq. �5� gives rise to a double potential well
around the cluster with a barrier between the two wells �see
Fig. 3�. Residues in the inner �closer to the cluster� potential
well �i.p.w.� are considered as belonging to the folded clus-
ter, whereas those in the outer potential well �o.p.w.� are
treated as belonging to the unfolded part of the protein. Tran-
sitions of residues from the inner well into the outer one and
vice versa are considered as elementary emission and absorp-
tion events, respectively. The double well character of the
potential well around the cluster allows one to determine the
rates of both emission and absorption of residues by the clus-
ter using a first-passage-time analysis.

Let us consider a heteropolymer bead �i.e., a protein resi-
due� of type i �i=b , l� performing a chaotic motion in a
spherically symmetric potential well 
�r� with one boundary
infinitely high �say, at r=ra� and the other one of finite height
�say, at r=rb�, the mean first passage time  necessary for the
molecule to escape from the well is

 =
1

Z

1

D
�

ra

rb

drr2e−��r��
r

rb

dyy−2e��y��
ra

y

dxx2e−��x� �6�

�see the Appendix�, where D is the diffusion coefficient of a
residue molecule, ��r�=
�r� /kBT, and

Z = �
ra

rb

drr2e−��r�. �7�

The expression for  is derived by solving a single-molecule
master equation for the probability distribution function of a

surface layer molecule �residue/bead� moving in a potential
field 
�r� �46–48,31–33�. The diffusive motion of the bead is
assumed to be governed by the Fokker-Planck equation. The
Fokker-Planck equation reduces to the Smoluchowski equa-
tion �which involves diffusion in an external field� if the
relaxation time for the velocity distribution function of the
molecule is very short and negligible compared to the char-
acteristic time scale of the passage process �see the Appen-
dix�.

The rates of emission and absorption of beads of type i by
the cluster �i.e., the numbers of residues of type i escaping
from the i.p.w. into the o.p.w. and from the o.p.w. into the
i.p.w., respectively, per unit time� are thus provided by

Wi
− =

Ni
−

i
− , Wi

+ =
Ni

+

i
+ , �8�

where Ni
− and Ni

+ denote the numbers of molecules in the
i.p.w. and o.p.w., respectively, and i

+ and i
− are the mean

first-passage times for the transition of a bead of type i from
the o.p.w. into the i.p.w. and from the i.p.w. into the o.p.w.,
respectively. Applying Eqs. �6� and �7� to calculate W−, the
locations of the boundaries of the i.p.w. must be used, that is,
ra=R and rb=R+�−, with R the radius of the cluster and �−

the width of the i.p.w. �Fig. 3�. On the other hand, calculating
W+, the locations of the boundaries of the o.p.w. must be
used in Eqs. �6� and �7�, that is, ra=R+�−+�+ and rb=R
+�−, with �+ the width of the o.p.w. The quantities Ni

− and
Ni

+ can be calculated as the product of the “volume
�number density,”

Ni
− =

4�

3
��R + �−�3 − R3��f ,

Ni
+ =

4�

3
��R + �− + �+�3 − �R + �−�3��u,

where �− and �+ are the widths of the inner and outer poten-
tial wells, and � f and �u are the number densities of residues
in the folded and unfolded parts of the protein.

The term �̄i
��r� in 
i�r� is due to the r-dependent part of

the dihedral angle potential of the whole protein. This is a
configurational potential consisting of contributions from ev-
ery dihedral angle formed by four consecutive beads in the
heteropolymer. The potential due to the dihedral angle � can
be modeled, e.g., as �29�

�� = ����1 + cos �� + ����1 + cos 3�� . �9�

Here ��� and ��� are independent energy parameters which
depend on the nature and sequence of the four beads in-
volved in the dihedral angle �. This potential has three
minima, one in the trans configuration at �=0 and two others
in the gauche configurations at �= 	arccos	�3���−���� /12���
�the former one being the lowest�.

Consider a bead 1 �of type b or l� at a distance r from the
�center of the� cluster, r�R �see Fig. 1�. The total dihedral
angle potential �i1

� �r� of the whole protein chain for a given
configuration of beads 1 ,2 ,3 , . . . ,N contains contributions
from all the dihedral angles in the heteropolymer each of

3 4 5 6 7 8
r�Η
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Φ
�
r
,
T

�
�
k
T Λ�Λ�

FIG. 3. The total potential field around the cluster of radius R
=3�, which a selected bead �bead 1 in Fig. 1� is subjected to, as a
function of the distance r /� from the cluster center. The widths of
the inner and outer potential wells are �− and �+, respectively.
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which is given by Eq. �9�. Clearly, �i1
� �r� is a function of not

only r, but also of coordinates of beads 2 through N, i.e.,
r2 ,r3 , . . . ,rN �the subscript is indicates the type of bead s
�s=1, . . . ,N ; is=b , l��. The contribution to �i1

� �r� from the di-
hedral angles involving beads 8 ,9 , . . . ,N does not depend on
r because those dihedral angles remain unaffected as the po-
sition of bead 1 changes because bead 1 participate in the
formation of dihedral angles only with three nearest beads on
either side of the heteropolymer �beads 2, 4, and 6 on one
side and beads 3, 5, and 7 on the other; see Fig. 1�. Hence
this contribution �const� can be omitted since it can be re-
garded as affecting only the reference level for �̄i1

� �r�. For a
given location of bead 1, various configurations of beads
2 ,3 , . . . ,N �subject to the bond length and bond angle con-
straints as well as to the constraint of excluded cluster vol-
ume� lead to various sets of dihedral angles. However, varia-
tions in the location of beads 8 ,9 , . . . ,N give rise to
variations in the dihedral potential which are independent of
the position of bead 1, characterized by r. The dihedral term
�̄i

��r� on the RHS of Eq. �5� can be obtained by averaging
�i1

� �r� with the Boltzmann factor exp�−�i1
�27�r� /kBT�, where

�i1
�27�r���i1

�27�r ,r2 , . . . ,r7�=�i1
� �r�+
s=2

7 �is
�rs�, over all the

possible configurations of beads 2,3,…,7 and assigning the
result to the selected bead with fixed coordinates, i.e., to
bead 1 �for more details see Refs. �31–33��. Because of this
averaging, the average dihedral potential depends on the
temperature T, and so does 
i�r� in Eq. �5�, i.e., �̄i

��r�
� �̄i

��r ,T� ,
i�r��
i�r ,T�. Therefore

�i�r� � �i�r,T� = 
i�r,T�/kBT . �10�

It is worthwhile to emphasize that in this model the polymer
connectivity is taken into account not only through the con-
fining potential �cp, but also through the average dihedral
potential �̄i

��r ,T�. Both of them are constituents of the over-
all potential field 
i�r ,T� whereto a selected bead is sub-
jected.

B. The threshold temperatures Tu
− and Tu

+ of cold
and hot denaturation and the unfolding times

As is clear, in order to evaluate Tu
+ and/or Tu

−, the mini-
mum and maximum temperatures of hot and cold denatur-
ation, respectively, that occur via spinodal decomposition, it
is necessary to know the temperature dependence of the
functions W−�N� and W+�N�, i.e., the functions Wi

w

=Wi
w�� ,T� �w= + ,−; i=b , l�.

If a protein is subject to both hot and cold denaturation,
the corresponding threshold temperatures at which its un-
folding can occur via spinodal decomposition �Tu

+ and Tu
−,

respectively� can be determined by solving the equation
W−�N ,T�=W+�N ,T� with respect to T, i.e.,

W−�N,Tu
+� = W+�N,Tu

+�, W−�N,Tu
−� = W+�N,Tu

−� �11�

�note that both W−�� ,T� and W+�� ,T� are monotonic func-
tions of ��. The first of these equalities means that the thresh-
old temperature of hot denaturation is the lowest temperature
at which the emission rate of a cluster is greater than or equal

to its absorption rate for clusters of any size, i.e., W−�� ,T�
�W+�� ,T� for any ��N and T�Tu

+. The second of the
equalities in Eq. �11� means that the threshold temperature of
cold denaturation is the highest temperature at which the
emission rate of a cluster is greater than or equal to its ab-
sorption rate for clusters of any size, i.e., W−�� ,T�
�W+�� ,T� for any ��N and T�Tu

−.
Estimates for the times necessary for the protein to unfold

at temperatures T=Tu
− or/and T=Tu

− via spinodal decomposi-
tion are given by equations

tu
− � �

0

N−0 d�

W−��,Tu
−� − W+��,Tu

−�
,

tu
+ � �

0

N−0 d�

W−��,Tu
+� − W+��,Tu

+�
. �12�

Clearly, the unfolding time of hot denaturation at a tempera-
ture T�Tu

+ is smaller than tu
+, while the unfolding time of

cold denaturation at a temperature T�Tu
− is smaller than tu

−.
The divergence of the integrands at the upper limit of inte-
gration at T=Tu

+ and T=Tu
− complicates the application of

these expressions. The character of the divergence deter-
mines whether the tu’s are finite or infinite, but this issue
cannot be rigorously addressed unless the � dependence of
W−���−W+��� is explicitly known. Reasonable estimates for
tu
− and tu

+ can be obtained either by evaluating the integrals at
temperatures very close to the threshold ones, Tu

	�1	�� with
a positive ��1, or by slightly decreasing the upper limit of
integration �as indicated in Eqs. �12��. The latter method
could be substantiated by the effect of fluctuations whereof
the physical impact is to decrease the size of the folded clus-
ter of size N but which are not formally included in the
model.

The direct application of the method proposed in Refs.
�31–33� to determine Wi

w �w= + ,−; i=b , l� as functions of �
and T, the temperatures of hot and cold denaturation Tu

+ and
Tu

−, and the corresponding unfolding times tu
+ and tu

− require
lengthy computations. First, the effective pairwise potential
�i�r� for a bead of type i in the vicinity of the cluster is
constructed as a function of r �distance from the center of a
cluster� for a cluster with the numbers of beads therein �
taken on a grid which must be fine enough to be able to
accurately construct �i�r ���, the effective pairwise potential
at fixed r as a function of the continuous variable � �note that
the integration in calculating �i�r� can be carried out analyti-
cally if the density � inside the cluster is assumed to be
uniform�. This function represents the first term on the RHS
of Eq. �5� for the potential field around a cluster. It is also
needed �see Refs. �32,33�� for calculating the average dihe-
dral potential �̄��r� as a function of r for given �, using the
same grid which must be fine enough to construct �̄��r ���,
the average dihedral potential as a function of the continuous
variable � at fixed r. This function represents the second term
in on the RHS of Eq. �5� for the potential field around a
cluster. Thus one can numerically construct 
i�r ,��, the po-
tential field around a cluster as a function of two variables, r
and �. Knowing this function, one can then calculate the
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emission and absorption rates of a cluster �as outlined above
or in Refs. �31–33�� as functions of the variable � for a given
T. To determine the temperature dependence of the unfolding
times of cold or/and hot denaturation, the emission and ab-
sorption rates Wi

+ and Wi
− �i=b , l� must be known as func-

tions of � for a series of temperature T�Tu
− or/and T�Tu

+,
respectively. Thus it is necessary to carry out the above pro-
cedure for a series of temperatures.

III. NUMERICAL CALCULATIONS

To explore the temperature effect on barrierless protein
unfolding in the framework of the first-passage-time analy-
sis, we carried out numerical calculations for the unfolding
of a large model protein �31� consisting of 2500 hydrophobic
and hydrophilic residues, with the mole fraction of hydro-
phobic residues �0=0.75. Hydrophilic residues are readily
solvated by water molecules. The presence of water mol-
ecules is taken into account implicitly. The formation of hy-
drogen bonds between water molecules and amino acid resi-
dues �particularly hydrophilic ones� has various impacts on
the behavior of the polypeptide chain. The pairwise interac-
tions of protein residues are affected by water molecules hy-
drating them. Dyhedral angle potential may be also affected
due to changes in properties of hydrated residues involved.
The direct interaction between water molecules hydrogen-
bound to protein residues also contributes to residue-residue
interactions. All these effects are assumed to be included into
the model via the choice of diffusion coefficients and poten-
tial parameters of both pairwise and dihedral angle poten-
tials. Pairs of nonadjacent �at least three links apart� beads of
type i and j at the distance d from each other were assumed
to interact by Lennard-Jones �LJ� potentials �ij�d�
=4�ij��� /d�12− �� /d�6� �i , j=b , l�, where � is the bond
length and �ij �i , j=b , l� is the energy parameter satisfying
the mixing rules �ij =	�ii� j j. The interactions of nearest and
next nearest neighbor beads are completely taken into ac-
count by the constant bond length and constant bond angle
constraints. The potential due to the dihedral angle � was
modeled according to Eq. �9�. The confining potential was
considered to be �cp�r�=0 for r�rcp and �cp�r�=� for r
�rcp, with the radius of the confining boundary rcp deter-
mined by the total number of residues in the protein, densi-
ties of residues in its unfolded and folded parts, and the
radius of the cluster �folded part�: rcp= �3 /4��1/3�� /� f + �N
−�� /�u�1/3. A cluster of native residues was characterized by
only one independent variable �its radius or total number of
residues therein, depending on convenience�. This assump-
tion is not essential and served only as a means to simplify
the algebra and numerics and to ensure some simplicity of
the proposed model.

The numerical values of the parameters involved in the
model were chosen as follows. For the potential parameters
we have taken �=5.39�10−8 cm, �ll= �2 /700��bb, ���=���
=0.3�bb, �bb=4�10−14 erg. The mole fraction of hydropho-
bic beads was �=0.75 both in the whole protein and in the
cluster. The typical density of the folded protein was evalu-
ated using data from Refs. �49,50� and was set to � f�

3

=1.05, whereas the typical density of the unfolded protein in

the compact configuration was set to be �u=0.25� f. The tem-
perature dependence of the diffusion coefficients Diw and
Dow was modeled as a power law D0�1−Tc /T�� as predicted
�51� by the mode coupling theory. Taking into account the
results of Ref. �52�, the diffusion coefficients in the i.p.w.
and the o.p.w. were assumed to be related by Diw� f =Dow�u.
Because of the lack of reliable data on the diffusion coeffi-
cient of a residue in a native protein, D0

iw was assumed to
vary between 10−7 cm2 /s and 10−9 cm2 /s �much smaller
than typical diffusion coefficients for gases but somewhat
larger than typical values for solids�. At the temperature T0
=293.15 K the model protein is predicted �31� to fold into its
native state on a time scale of 1–100 s �depending on what
numerical value is chosen for the factor D0

iw in the diffusion
coefficient Diw�. The parameters Tc and � were chosen to be
Tc=240 K and �=2.1 �for the i.p.w.� and Tc=245 K and �
=2.9 �for the o.p.w.�. The parameter Tc determines the tem-
perature at which the “freezing” of the protein residues oc-
curs. Note that the T dependence of Diw arises not only from
the direct temperature effect on the chaotic motion of protein
residues but also from the indirect effect of either weakening
�with increasing T� or strengthening �with decreasing T� their
hydrogen bonds with water molecules and between water
molecules themselves.

The results of numerical calculations are shown in Figs.
4–6. The temperature dependence of the difference between
W−�N ,T� and W+�N ,T� is presented in Fig. 4 as a function
��T���W−�N ,T�−W+�N ,T�� /W+�N ,T� vs T. The threshold
temperatures Tu

− and Tu
+ of cold and hot denaturation are de-

termined as the roots of the equation ��T�=0. For the model
protein considered, Tu

−�267 K�T0−26 K and Tu
+�338 K

�T0+45 K. Although denaturation at both low and high
temperatures is presumed to be a general property of proteins
�53–55�, the existence of two roots of the equation ��T�=0
is not automatic but is possible due to the interplay between
the temperature dependence of the diffusion coefficients in
the inner and outer potential wells, Diw and Diw. Therefore
such a temperature dependence is expected to be most ad-
equate for real proteins exhibiting both cold and hot denatur-
ation. The negative values of this function correspond to con-
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FIG. 4. The function ��T�= �W−�N ,T�−W+�N ,T�� /W+�N ,T�
plotted vs T for a protein exhibiting both cold and hot denaturation
at Tu

−�247 K and Tu
+�338 K, respectively �for more details, see

the text�. The dashed line through the points is just for guiding the
eye.
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ditions when the protein unfolding cannot occur in a
barrierless way �see also Fig. 5�a��. Thus the temperature
interval from Tu

− to Tu
+ roughly determines the protein stabil-

ity range. Clearly, the real stability range may be somewhat
narrower because the protein can unfold via nucleation under
conditions when the barrierless process is not yet possible
�i.e., when T is slightly larger than Tu

− or slightly smaller than
Tu

+�. The positive values of ��T� correspond to conditions
under which the protein unfolds in a barrierless way. The
larger ��T��0, the faster denaturation is expected.

Figure 5 presents W+�� ,T� and W−�� ,T�, the emission and
absorption rates of a cluster �of native residues�, as functions
of � for three temperatures: T=T0 K �Fig. 5�a��, T=Tu

+�T0
+45 K �Fig. 5�b��, and T=Tu

++10 K �Fig. 5�c��. At T=T0
�Fig. 5�a��, W+����W−��� for ���c and W+����W−��� for

�c���N. Clearly, if the protein is initially unfolded at this
temperature, it cannot fold via the regular growth of the
folded cluster, but it can fold via nucleation. The intersection
of W+��� and W−��� provides the size �c of the critical cluster
�nucleus�. After the cluster of native residues attains the size
�c, the whole native structure forms immediately without
passing through any detectable intermediate states, because
the time tg of growth of the cluster from size �c to size N is
much smaller than the time t� of formation of the nucleus
�18–20�. On the other hand, at temperature Tu

+ �Fig. 5�b��,
W+����W−��� for 0���N. Therefore if a protein is ini-
tially unfolded at Tu

+, it will never fold, whereas, if it is
initially folded at this temperature, it will immediately start
unfolding via the loss of residues from its native structure,
i.e., in a barrierless way. If the temperature is increased be-
yond Tu

+ �Fig. 5�c��, the time necessary for the protein to
unfold via spinodal decomposition becomes shorter �com-
pared to that time at T=Tu

+�, because the higher is T above Tu
+

the greater is the positive difference W−���−W+���. Similar
behavior is observed when the temperature is decreased
down from Tu

−.
Let us denote the times of protein denaturation �via spin-

odal decomposition� upon heating or cooling at some tem-
perature T by tu

+�T� and tu
−�T�, respectively. The temperature

dependence of the cold denaturation time was calculated at
two temperatures below Tu

−, namely, T=Tu
−−5 K and T=Tu

−

−10 K. We have also calculated the time of hot denaturation
at three temperatures above Tu

+, namely, T=Tu
++5 K, T=Tu

+

+10 K, and T=Tu
++15 K. The temperature dependence of tu

−

and tu
+ is presented in Fig. 6. As expected, the time of barri-

erless denaturation decreases as T increases above Tu
+ or as T

decreases below Tu
−. The unfolding times tu

− and tu
+ are in-

versely proportional to the coefficient D0 in the temperature
dependence of the diffusion coefficient Diw. In Fig. 6, the
unfolding times tu

− and tu
+ are shown for the case D0

=10−8 cm2 /s. Considering D0
iw to be between 10−7 cm2 /s

and 10−9 cm2 /s, the unfolding time of hot denaturation tu
+

would vary from 0.07 to 7 ms, whereas the unfolding time
of cold denaturation tu

− would vary from 0.5 to 50 ms, con-
sistent with the experimental data on the unfolding times of
hot and cold denaturation �53–59�. Many MD simulations
report �60,61� much shorter time scales for hot denaturation,
but those simulations are usually concerned with the se-
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FIG. 5. The emission and absorption rates of a cluster �of native
residues�, W+��� and W−���, as functions of the cluster radius R at
T=T0=293.15 K �protein in the native state, �a��, T=Tu

+�338 K
�threshold temperature of hot denaturation, �b��, and T=Tu
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quence of structural changes occurring upon protein unfold-
ing and hence use artificial means to speed up the process
and make unfolding occur on a time scale amenable to MD
simulations, which is typically less than 100 ns.

IV. CONCLUSIONS

Treating a protein as a heteropolymer with all the bonds
having the same constant length and all the bond angles
equal and fixed, we recently �31–33� proposed a kinetic
model for the nucleation mechanism of protein folding. As a
crucial idea of that model, an overall potential around the
cluster of native residues wherein a protein residue performs
a chaotic motion is considered to be a combination of three
terms representing the average dihedral, effective pairwise,
and confining potentials. The overall potential as a function
of the distance from the cluster center has a double well
shape which allows one to determine both the emission and
absorption rates of residues by the cluster using the first-
passage-time analysis and ultimately evaluate the protein
folding time. Note that in this model the polymer connectiv-
ity is taken into account through the confining and average
dihedral potentials, constituents of the overall potential field
in which a selected bead performs a chaotic motion.

In this paper we have presented a similar approach to
barrierless protein denaturation �i.e., occurring as spinodal
decomposition�. The key elements of the approach are the
temperature dependent rates with which a cluster of native
residues within a compact �but not native� protein emits and
absorbs residues. Considering a native protein, stable at tem-
perature T0=293.15 K, we have examined the temperature
dependence of the emission and absorption rates of the clus-
ter �which are also functions of the cluster size�. This has
allowed us to find the threshold temperatures of both hot and
cold barrierless denaturation and the time of protein unfold-
ing at various temperatures.

For a numerical illustration of the proposed method, we
have considered the thermal denaturation of a model protein
�31� which is predicted to fold into its native state at tem-
perature T0 on a time scale of 1–100 s �depending on what
numerical value is chosen for the diffusion coefficient of
residues in the folded protein�. The model protein considered
is a random heteropolymer consisting of a total of 2500
beads of which 75% are hydrophobic and the rest hydro-
philic. The purpose of considering such a large protein was
to demonstrate the time efficiency of the proposed method.
By using the proposed method, the denaturation time of such
large proteins can be evaluated much faster than by carrying
out direct MD or MC simulations of their unfolding.

We have determined the threshold temperatures of cold
and hot denaturation �via spinodal decomposition� of this
protein as Tu

−�267 K�T0−26 K and Tu
+�338 K�T0

+45 K, respectively, and examined the temperature depen-
dence of the time of both cold and hot denaturation at tem-
peratures lower and higher than the threshold temperatures of
cold and hot denaturation. The unfolding time is inversely
proportional to the diffusion coefficient Diw of residues in the
native protein for which no reliable data exist in literature.
Assuming Diw to vary between 10−7 cm2 /s and 10−9 cm2 /s,

the unfolding time tu
+ at the threshold temperature of hot

denaturation varies from 0.07 to 7 ms, whereas the unfold-
ing time tu

− at the threshold temperature of cold denaturation
varies from 0.5 to 50 ms which is essentially in the range of
typical times of protein denaturation. It should be noted that
our estimates for tu

	 are not for a general protein, but are for
a particular protein with the particular size, composition,
and interaction parameters as described in the section. Pre-
dictions for the unfolding time could differ by orders of mag-
nitude for a different model protein which is quite consistent
with the fact that for real proteins unfolding takes place on
the time scales that span many orders of magnitude.

APPENDIX: DERIVATION OF EQ. (6) and (7)
FOR THE MEAN FIRST-PASSAGE TIME

The mean first-passage-time analysis �42–44� can be used
to obtain the rates of emission and absorption of beads by a
cluster during protein folding �31–33�. To this end, a bead in
the vicinity of the cluster is considered to perform a chaotic
motion in the potential wells arising as a combination of the
bead-cluster interactions with the dihedral angle potential.
The mean first-passage time of a bead escaping from a po-
tential well is calculated on the basis of a kinetic equation
governing the chaotic motion of the bead in that potential
well. The chaotic motion of the bead is assumed to be gov-
erned by the Fokker-Planck equation for the single-particle
distribution function with respect to its coordinates and mo-
menta, i.e., in the phase space �46–48�. Prior to the passage
event, the evolution of a bead in both the i.p.w. and o.p.w.
occurs in a dense enough medium �cluster of folded residues
or unfolded, but compact part of the protein�, where the re-
laxation time for its velocity distribution function is very
short and negligible compared to the characteristic time scale
of the passage process. Under these conditions, the Fokker-
Planck equation reduces to the Smoluchowski equation,
which involves diffusion in an external field �46,47�. In the
case of spherical symmetry it can be written in the form
�42–44�

�pi�r,t�r0�
�t

= Dir
−2 �

�r
�r2e−�i�r� �

�r
e�i�r�pi�r,t�r0�� , �A1�

where pi�r , t �r0� is the probability of observing a bead of
species i �i=b , l� between r and r+dr at time t given that
initially it was at a radial distance r0, Di is its diffusion
coefficient in the well, and �i�r�=
i�r� /kT.

The mean passage time depends on the initial position
�distance from the center of the cluster� r0 of the bead. It is
convenient to use the backward Smoluchowski equation
�42–44� which expresses the dependence of the transition
probability pi�r , t �r0� on r0:

�pi�r,t�r0�
�t

= Dir0
−2e�i�r0� �

�r0
�r0

2e−�i�r0� �

�r0
pi�r,t�r0�� .

�A2�

Let us first consider the i.p.w. �with an infinite height
boundary at ra=R and a finite height one at rb=R+�−� and
find the emission rate of beads therefrom. The probability
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that a bead i, initially at a distance r0 within the surface layer,
will remain in this region after time t is given by the so-
called survival probability �42–44�,

qi�t�r0� = �
R

R+�−

drr2pi�r,t�r0� �R � r0 � R + �−� ,

�A3�

where R is the radius of the cluster and �i
− is the width of the

potential well determined by the location of the barrier be-
tween the i.p.w. and the o.p.w. �see Fig. 2�. The probability
for the dissociation time to be between 0 and t is equal to
1−qi�t �r0�, and the probability density for the dissociation
time is given by −�qi /�t. The first-passage time is provided
by �46–48�

i��r0� = − �
0

�

t
�qi�t�r0�

�t
dt = �

0

�

qi�t�r0�dt . �A4�

The equation for the first passage time is obtained by inte-
grating the backward Smoluchowski equation �A2� with re-
spect to r and t over the entire range and using the boundary
conditions qi�0 �r0�=1 and qi�t �r0�→0 as t→� for any r0.
This yields �42–44�

− Dir0
−2e��r0� �

�r0
�r0

2e−�i�r0� �

�r0
i��r0�� = 1. �A5�

One can solve Eq. �A5� by assuming a reflecting inner
boundary of the well �di� /dr0=0 at r0=R� and the radiation
boundary condition at the outer boundary �i��r0�=0 at r0
=R+�−�. One thus obtains for the first-passage time,

i��r0� =
1

Di
�

r0

R+�i
−

dyy−2e�i�y��
R

y

dxx2e−�i�x�. �A6�

The average dissociation time i, or the mean first passage
time, is obtained by averaging i��r0� with the Boltzmann
factor over all possible initial positions r0:

i =
1

Z
�

R

R+�−

dr0r0
2e−�i�r0�i��r0� �A7�

with

Z = �
R

R+�−

dr0r0
2e−�i�r0�. �A8�

In a similar fashion, one can determine the mean first-
passage time for the transition of a bead from the o.p.w.
�with an infinite height boundary at ra=R+�−+�+ and a fi-
nite height one at rb=R+�−� into the i.p.w.
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